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Abstract

A computer program is described for the experimental set-up and interpretation of ruggedness tests. The
implemented strategy was based on a number of case studies and contains both recommended designs and minimal
designs. The minimal designs reduce the number of experiments, but they cannot be statistically interpreted based on
the interaction or dummy factor effects. The use of randomization tests as an alternative statistical interpretation
method for the significance of the effects was examined. Some of the minimal designs are expandable to designs with
characteristics similar to those of the recommended designs. The program is designed to facilitate the selection of the
designs and the interpretation of the results and to prevent or detect problems such as drifting of responses. © 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

The ruggedness of an analytical method can
generally be described as the ability to reproduce
this method under different circumstances without
the occurrence of unexpected differences in the
obtained results [1]. A ruggedness test is a part of
method validation, which is becoming increas-
ingly important, particularly in the pharmaceuti-
cal industry. However a ruggedness test is often
not performed, due to the complexity and the
many approaches possible. Therefore, after exam-
ining the literature [1] and performing a number

of case studies [2–5], a strategy was selected to
determine the ruggedness of an analytical method
[6]. This strategy was implemented in a MATLAB
computer program, called ruggedness test strategy
(RTS), which is described in this article. The
strategy presented here follows the definition for
ruggedness test most frequently used in the chem-
ical literature: ‘A ruggedness test is an intralabo-
ratory experimental study in which the influence
of small changes in the operating or environmen-
tal conditions, called factors, on measured or
calculated responses are evaluated. The changes
introduced, reflect the changes that can occur
when a method is transferred between different
laboratories, different experimentors, different
devices, etc.’ [7,8]. According to this definition,
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the factors one examines are mainly factors that
are described in the operating procedure of the
method, such as flow rate, pH of mobile phases,
etc.

2. Hardware and software

RTS was developed on a computer with an
Intel 75 MHz Pentium processor and 8 MB
RAM, running Microsoft Windows 3.1 and
Mathworks MATLAB 4.0.

MATLAB is a technical programming environ-
ment for high-performance numeric computation
and visualisation.

The minimum configuration for RTS is a com-
puter with a 486 processor with mathematical
co-processor and 8 MB RAM, running Microsoft
Windows 3.1x and MATLAB 4.x.

3. Description of the program

The program is designed to guide the user step
by step through the strategy for the experimental
set-up and the interpretation of a ruggedness test,
as can be seen in the flow chart of the program
(Fig. 1). The graphical interface, the on-line help
menus and default choices make the program
user-friendly, so that it can easily be run by users
having little experience with MATLAB or with
ruggedness testing. Structured programming and
source code make the program easy to update.

RTS consists of two main parts: (i) the selection
and creation of the experimental set-up and (ii)
the treatment of the results of the experiments in
which the experimental data are entered and the
calculations and the statistical interpretation are
performed.

The program enables experimental data to be
manually entered, saved and loaded from disk.
Each choice to be made or result is represented on
a separate screen. On each screen there is (i) a
help-menu, containing a contents description, a
‘Frequently Asked Questions’ file and a context-
specific explanation, (ii) a ‘Go on’ and ‘Back’
button allowing fast navigating through the pro-
gram, (iii) a ‘Quit’ button allowing to leave on Fig. 1. Flowchart of RTS.
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Fig. 2. Definition of factors and levels.

each moment the program with or without saving
all data (see Fig. 2).

For the choices to be performed by the analyst,
user-friendly radio-buttons, sliders and pop-up
menus are used with the recommended choices as
default values. Question sections are pruned if
they are not required. The results are represented
numerical and visual. A report can be generated
containing the complete set-up and all the results.
This report can be used in other applications or
imported in other documents.

The program can be downloaded at http://
fabi.vub.ac.be/~fabi/rts.html

3.1. Creation of the experimental set-up

3.1.1. Selection and definition of the factors and
le6els to test

With RTS one can investigate 2–20 factors,
each at two or three levels. After defining the
number of factors and levels, the user can describe

the factors and their levels. In Fig. 2 an example
is shown for testing five factors of an HPLC
method at two levels. The factors can often easily
be selected from the operating procedure for the
method. The levels should represent the maximum
difference of the values of the factors that can be
expected when the method is transferred between
different laboratories, different devices, different
experimentors, etc. If the factors are tested at only
two levels, then they are generally tested at a low
and a high extreme level, that is a level smaller
and larger respectively than the nominal one (spe-
cified in the operating procedure). If the factors
are tested at three levels, the nominal and two
extremes are usually selected.

A decision support system for the selection of
factors and their levels was programmed in
Asymetrix Toolbook v1.5 (see Fig. 3). This exter-
nal module can be called from RTS if desired.
Factors (mostly related to chromatography meth-
ods) can be selected from a list (see Table 1). For
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Fig. 3. Decision support system for the selection of factors and their levels.

each factor recommended levels are available.
New factors can be added to the list by the
analyst at run time. For certain factors, such as
mixture compounds, buffers and columns, addi-
tional advice is given as described in [9].

3.1.2. Selection of the experimental design
RTS proposes a limited number of experimen-

tal designs as a function of the number of investi-
gated factors (see Fig. 4). Factorial [10] and
Plackett–Burman [11] designs are included in the
program (see Table 2). The user can choose be-
tween recommended and minimal designs.

The recommended designs were applied in the
original strategy [6]. These designs were chosen so
that the number of experiments is the lowest
possible, but still allow statistical interpretation.
Namely, in the factorial designs, the two-factor
interactions are not confounded with the main
effects (design resolution is at least IV) and at

least three two-factor interactions can be calcu-
lated. The Plackett–Burman designs were chosen
so that at least three dummy factors are included.

For examining five to eight factors with the
recommended designs, there is also the choice
between a fractional factorial and a Plackett–Bur-
man design. Only the fractional factorial designs
allow to estimate the main effects without being
confounded with the two-factor interactions, but
for the Plackett–Burman design on the other
hand less experiments are needed [6].

The designs of the recommended strategy
proved to work in a number of case studies [2–5],
but not everyone is willing to perform more ex-
periments than what is strictly necessary and not
everybody wants a statistical interpretation of the
effects. Often it is sufficient to have an idea of the
magnitude of the effects. Therefore minimal de-
signs were added to the strategy [6]. They were
chosen so that the number of experiments is the
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lowest possible. This usually means that the statis-
tical interpretation applied for the recommended
designs is no longer possible. Some of the minimal
designs are expandable to designs similar to the
recommended designs [6]. After the evaluation of
the results obtained with the minimal designs, one
can decide whether or not to expand the design.
Expansion is done by performing additional ex-
periments. For fractional factorial designs for in-
stance, another well-defined fraction of the full
factorial is performed. The combination of this
new design and the original minimal design gives
a new one (expanded design) with resolution IV,
similar to the recommended designs. For five fac-
tors, the minimal design is a quarter-fraction fac-
torial design with eight experiments. This can be
expanded to a half-fraction factorial design with
16 experiments, similar to the recommended de-
sign for five factors, by performing eight addi-
tional experiments.

If the factors are tested at three levels, the
designs of Table 2 are reflected. This means that
the designs are performed twice: once with the
low extreme level and the nominal level, once with
the high extreme level and the nominal level.
However, such reflected designs are not recom-
mended, since they require additional experiments
and most of the time do not result in additional
information.

As can be seen in Fig. 4, for each proposed
design it is mentioned how many experiments are
needed and how the statistical and graphical inter-
pretation will be performed.

3.1.3. Sequence of experiments
The design experiments are normally performed

in a random sequence. However the user can
choose to sort (block) the experiments by one to
three factors. This means that first all the experi-
ments with the blocked factor at one level are
performed, and thereafter all the experiments with
the blocked factor at the other level(s). Within the
blocks the experiments are still randomized. This
sorting can be useful for practical reasons, but if
drift occurs, the estimated effect of the blocked
factor(s) will be affected most by the drift [5].

A possible check for drift is also included in
RTS. This is done by performing replicated nomi-

Table 1
List of proposed factors and their levels in external module

Factors Distance between
levels

Sample preparation
Sample weight 1%
Shake time 20%
Sonication time 20%
Heating temperature 5°C
Wash volume 20%
Extraction volume 20%
Centrifugation time 1 min
Centrifugation speed 500 rpm

20%Concentration internal standard
10%Volume derivatisation agent
10%Concentration derivatisation agent
20%Derivatisation time
5°CDerivatisation temperature

Volume of pH adjusting solution 10%
Concentration of pH adjusting 10%
solution
pH of solution 0.2
Extraction time 10%
Dilution factor

Chromatography
0.2pH of mobile phase

pH of buffer 0.2
Ionic strength of buffer 5%
Buffer concentration 1%
Column temperature 5°C
Injection volume 10 ml
Injection concentration 1%
Flow rate 0.1 ml min−1

Concentration tailing suppressor 1%
Slope gradient 5%

5%Volume organic modifier
5%Volume aqueous phase

Detector wavelength 5 nm
Time constant 0.1 s

2 nmBandwidth
5°CDetector cell temperature

Non procedure related
Different analysts
Different instruments
Different days 1 day
Different laboratories
Different lot of reagents
Column manufacturer
Lifetime column
Column batch
Different type of pipette
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Fig. 4. Selection of design.

nal experiments at regular times between the de-
sign experiments. The user can choose the number
of experiments at nominal level from a proposed
list. These nominal experiments are used to check
visually the drifting of the nominal response as a
function of time and to perform a correction for
the occasionally occurring drift.

If the user chose not to check for drift, the
possibility is provided to add a nominal experi-
ment before and after the design experiments.
These experiments allow to check if the responses
from the experiments at nominal level are as
expected at the beginning and the end of the
experiments, to obtain an idea of occasionally
occurring drift and to normalize the effects [6].

RTS then presents the matrix of the non-ran-
domized or sorted design, the matrix of the exper-
iments ranked in the order in which they must be
performed and a full description of the levels of
each factor for each experiment, ready to be used
by the analyst.

In the following, an example of the output is
shown for testing five HPLC factors (shown in
Fig. 2) with a minimal design consisting of eight
experiments. The experiments are sorted by the
factor ‘pH of mobile phases’ (factor E) and ev-
ery four design experiments a nominal experi-
ment is added.

Matrix of the design
Five factors: quarter fraction factorial design

(Expandable)

E BCExp A B C D BE
+CD+DE

1 1 11 −1 −1 −1−1
1 1−12 −11 −1 −1

−1 1 −1 13 −1 1 −1
−1−14 1 1 −1 1 −1

1 1 −15 −1 −1−1 1
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−11−1 −16 1 −1 1
−1 −1 17 −1−1 1 1

1 1 18 1 1 11

Matrix of ranked experiments

C DExp A B E

0 00 0 00
−1 −1−1−12 1

1 −17 −1 −11
1 −14 1 1 −1

1 15 −1 −1 −1
0 0 000 0

1 11 −1 −1 −1
1 −16 1 −1 1

−1−1 113 −1
118 1 1 1
0000 00

Experimental set-up
1: Experiment 0 (experiment at nominal level)

Flow rate=1.0 ml min−1

Column temperature=25°C
Injection volume=60 ml
Detection wavelength=214 nm
pH of mobile phases=5.0

2: Experiment 2
Flow rate=1.1 ml min−1

Column temperature=20°C
Injection volume=50 ml
Detection wavelength=212 nm
pH of mobile phases=4.8
...[Truncated]...

11: Experiment 0 (experiment at nominal level)
Flow rate=1.0 ml min−1

Column temperature=25°C
Injection volume=60 ml
Detection wavelength=214 nm
pH of mobile phases=5.0

3.2. Treatment of the experimental results

3.2.1. Calculation and presentation of effects
After performing the experiments, the experi-

mental set-up can be loaded again into the second
part of RTS for the treatment of the results and
the obtained data are entered manually into the
system. This part of the program can, if necessary,
be used more than once for a given experimental
set-up, each time for a different response. Resolu-
tions between peaks, contents of the main sub-
stances, peak heights, etc. are examples of
responses which could be examined for chromato-
graphic methods.

If one checked for drift, the corrected response
results are calculated [6] and presented, and the
nominal results are plotted as a function of time
(see Fig. 5). The percentual change of the re-
sponse between the beginning and the end of the
experiments is calculated. Based on this informa-
tion, the analyst can decide if drifting indeed
occurs and whether he uses the effects calculated
from the measured or corrected responses.

Effects are calculated from the measured results
and if available also from the corrected results [6].
If the factors are tested at three levels, two effects
are calculated: one for the low level interval and
one for the high level interval. The effects are
presented in tables (see Fig. 6) and in bar plots
(see Fig. 7).

3.2.2. Statistical interpretation of the results
To identify statistically significant effects from

the recommended designs, a t-test is performed.
The absolute value of the effect of a factor X
(�EX �) is considered to be significant if the t-test
value (t) is larger than a critical value (tcritical),
which is the tabulated t-value with an appropriate
number of degrees of freedom

t=
�EX �

(SE)e

Utcritical (1)

or, in other words, if the effect of the factor is
larger than a critical effect value (Ecritical)

�EX �UEcritical= tcritical · (SE)e (2)

The standard error (SE)e is estimated from
effects considered negligible, namely two-factor
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Fig. 5. Nominal results plotted in function of time.

interaction effects for factorial designs or dummy
factor effects for Plackett–Burman designs.

The critical effect is calculated for a significance
level a=0.05 and a=0.01. Significance of an
estimated effect at a=0.05 is indicated with * and
at a=0.01 with **. These critical effects are also
indicated on the bar plots of the effects.

The minimal designs do not always have enough
interactions or dummy factor effects for a statisti-
cal interpretation. Other possibilities [2] exist,
such as estimating (SE)e from (i) the variance
from R replicate measurements at nominal level,
(ii) the variance from duplicated experiments in
the design, (iii) the variance of the experiments of
the design or (iv) one could perform an indepen-
dent t-test with hypothesis H0: Y( (+ )=Y( (− )
where Y( (+ ) and Y( (− ) are the mean of the
responses where factor X is respectively at the
high level and low level. However all those meth-
ods seem to overestimate or underestimate the
experimental error in most cases [2]. Methods (i)
and (ii) require additional experiments, which
must be avoided in a minimal design. Method (iv)
is based on the hypothesis of normal distribution

and homoscedasticity, which will not be the case
when there is an effect.

Therefore randomization tests [12,13] were ex-
amined as statistical interpretation method. In a
randomization test the significance is not deter-
mined from statistical tables, but from the distri-
bution of a test statistic generated by randomly
assigning the experimental data to the different
conditions (methods, treatments, levels of fac-
tors,...). They have the advantage that they are
truly distribution-free: no assumptions of normal-
ity or homoscedasticity are required. The hypoth-
esis test here is not based on whether a certain
t-value is exceeded, but on ranking. In our strat-
egy, a test statistic (t), equivalent to that for an
independent t-test,

t= �Y( (+ )−Y( (− )� (3)

is calculated for each factor X. Then the data (i.e.
the measured responses) are permuted repeatedly
and the test statistic is calculated for each of the
resulting data permutations. These data permuta-
tions, including those representing the examined
factor, constitute the reference set for determining
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Fig. 6. Tables of effects.

significance. A simulated example is shown in
Table 3: the effects of four factors are examined
at two levels in eight experiments. Permutation 1
(first row) is considered as the original data and
represents the effect of factor A: the four first
experiments, factor A was at level (− ) and the
four last experiments factor A was at level (+ ).
The reference set exists of every possible partition
of the eight responses that assigns four to level
(− ) and four to level (+ ). Some of the permuta-
tions can represent another factor, if one look e.g.
at Table 4 how factor B is represented (− − +
+ − − + + ), one finds that this equals
permutation 10. The proportion of data permuta-
tions in the reference set that have test statistic
values larger than or equal to the value for the
examined factor is the P-value (significance or
probability value). The effects are considered sig-
nificant when the P-value is smaller than 0.01
(a=0.01) or 0.05 (a=0.05). Significance of an
estimated effect at a=0.05 is indicated with * and

at a=0.01 with ** (see Fig. 6). If there are only
35 data permutations (eight experiments) an effect
is indicated with * if the P-value is 2/35 (second
largest test statistic) and with ** if the P-value is
1/35 (largest test statistic). In our example, the
factor B has as P-value 1/35 (lowest probability)
and is therefore considered as significant on the
level a=0.01.

The disadvantage of randomization tests is the
long computer time needed for in some cases large
number of permutations. This time is minimized
by using the simplified equivalent test statistic
(Eq. (3)) and by using random data permutation.
The simplified test statistic can be used because it
results in the same ranking order as the test
statistic of the t-test [12]. When using random
data permutation, the test statistic values are only
calculated for a certain number of permutations,
randomly selected from all the possible ones. In
RTS 2000 random data permutations are calcu-
lated or all the systematic data permutations if
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Fig. 7. Bar plot of effects.

there are less than 2000. It has been shown that
the power of a randomization test with as few as
1000 random data permutations is almost equal
to that of the randomization test with systematic
data permutation [14].

However some problems are to be expected
when there is more than one significant effect. A
strong significant effect will probably cause an
underestimation of the significance of the other
effects. This is due to the fact that the test statis-
tics for certain data permutations may be con-
founded by other effects of the design. This is
solved by performing a correction for each signifi-
cant effect. If a strong significant effect is found,
the responses are corrected by adding half of the
absolute value of the effect to the responses be-
longing to the level which gives the lowest re-
sponses, and by subtracting half of the absolute
value of the effect from the responses belonging to
the level which gives the highest responses (i.e.
elimination of highest effect from data set). The
randomization test is then computed with the
corrected responses. This is repeated until no new
significant effects are found. An example of this
procedure on the data of Table 3 is shown in

Table 4. Four factors are tested at two levels in
eight experiments. With the t-test based on the
interaction effects, three significant effects are
found (A, B and C). The randomization test only
indicates one effect (B) as significant. The signifi-
cance of the effects of factor A and C is underes-
timated due to the confounding of the effect of
factor B in other data permutations. After correc-
tion of the responses for factor B, two significant
effects (B and A) are found. After correction for
factor A, three significant effects (A, B and C) are
found. Correction for factor C doesn’t result in
more significant effects. This means that the same
effects are indicated as significant with the t-test
based on interaction or dummy effects as with the
randomization tests with correction.

The expanded designs are statistically inter-
preted in the same way as the recommended
designs.

3.2.3. Graphical interpretation of the effects
The normal distribution of the effects is verified

graphically by plotting the effects in a normal
probability plot (see Fig. 8) [15,16]. Non-signifi-
cant effects are normally distributed around zero
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Table 3
35 data permutations for 8 experiments (2 levels)

Level (+)Level (−) RankingTest statisticPermutation

1119 1177 101.25 91 (factor A) 823 876 1021 1078 928 979
176.25 22 823 1177876 11191021 928 1078 979

1119 1177 150.753 823 876 1021 979 1078 3928
1380.7511774 823 876 9791021 1119 1078 928

1119 51.755 823 876 1021 1177 1078 928 979 20
1177 147.756 823 876 1078 928 1021 979 1119 4

122.7511777 823 7876 11191078 979 1021 928
979 1177 52.258 823 876 1078 1119 1021 19928

3023.5511199 823 876 9791078 1177 1021 928
1177 197.2510 (factor B) 823 876 928 979 1021 1078 1119 1
1177 127.2511 823 876 928 1119 1021 1078 979 5

11111912 823 98.25876 979928 1177 1021 1078
928 1177 101.7513 823 8876 979 1119 1021 1078

1672.75111914 823 876 928979 1177 1021 1078
979 2.7515 823 876 1119 1177 1021 1078 928 32

1177 75.2516 823 1021 1078 928 876 979 1119 15
21117717 823 49.751021 11191078 979 876 928

1177 20.2518 823 1021 1078 1119 876 928 979 31
2249.25111919 823 1021 9791078 1177 876 928

1177 124.7520 823 1021 928 979 876 1078 1119 6
1177 54.7521 (factor C) 823 1021 928 1119 876 1078 979 18

28111922 823 25.751021 979928 1177 876 1078
928 1177 29.2523 823 251021 979 1119 876 1078

350.25111924 823 1021 928979 1177 876 1078
979 69.7525 823 1021 1119 1177 876 1078 928 17

1177 96.2526 823 1078 928 979 876 1021 1119 13
26.25117727 823 271078 979928 1119 876 1021

979 1119 2.7528 823 1078 33928 1177 876 1021
340.75117729 (factor D) 823 1078 928979 1119 876 1021

1119 28.2530 823 1078 979 1177 876 1021 928 26
979 98.2531 823 1078 1119 1177 876 1021 928 10

14117732 823 75.75928 1078979 1119 876 1021
1078 1119 46.7533 823 928 24979 1177 876 1021

2923.2597934 823 928 10781119 1177 876 1021
2348.7535 823 979 1119 1177 876 1021 1078 928

and in a normal probability plot they tend to fall
on a straight line, while significant effects deviate
from this line and are located at the sides of the
figure. This line preferably should fit to the non-
significant experiments. Drawing the least squares
line through all effects is not a good solution,
since significant effects are in fact outliers to the
straight line formed by the non-significant ones
and they will attract the line into their direction.
This makes it, in some cases, more difficult to
judge whether a point deviates from the non-sig-
nificance line or not. Therefore a more robust line

is obtained by calculating the least squares line
through the smallest (in absolute values) 80% of
the effects.

4. Case study

As an example we consider one of the experi-
ments described in reference [5]. The effect of four
factors on the HPLC assay for tetracycline (TC)
and its impurities was examined. For four factors,
the RTS program proposes (see Table 2) as rec-
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Fig. 8. Normal probability plot of effects.

ommended design a half-fraction factorial design
of eight experiments with a statistical interpreta-
tion based on three interaction effects. As mini-
mal design, the same half-fraction factorial design
of eight experiments is proposed, but when this
option of the program is chosen, a randomization
test with 35 permutations will be used as statisti-
cal interpretation method. For examining four
factors, the minimal design has no benefits (the
number of experiments could not be reduced
here), but in this case study it is interesting for
comparisons. Originally the recommended design
option was selected. The report file is shown
below for the response ‘relative retention of tetra-
cycline (to epitetracycline)’:

RTS—RUGGEDNESS TEST STRATEGY
VERSION 1.1.11 (Dec 1997)
Report RRET–TC.MAT
22–Dec–97

Description of tested factors and their levels

Factor High levelLow level

0.19 M/0.38 0.21 M/0.42NH4ox/
MMNH4phosphate
280 ml260 mlVol. DMF in mob.

phase
7.857.45pH of mobile

phase
Flow of mobile 0.9 ml 1.1 ml

min−1 min−1phase

Matrix of the design.
Four factors: Half-fraction factorial design

AB ADExp A B C D AC
+BD +BC+CD

1 111 −1−1 −1 −1
1 −1 −12 1 −1 1−1

−11−13 1−1 1 −1
−1 1 −14 1 1 −1−1

1 1 −15 −1 −1 −11
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−1 −1 16 1 −1−1 1
−1 1−17 −1−1 1 1

1 1 18 11 1 1

Matrix of ranked experiments

DCExp A B

−1 −11 −1−1
−1 1−112

−1 1 −1 13
−1−1114

−1 15 −1 1
−1 16 1 −1

−111−17
1 18 11

Experimental set-up
1: Experiment 1

NH4ox/NH4 phosphate=0.19 M/0.38 M
Vol. DMF in mob. phase=260 ml
pH of mobile phase=7.45
Flow=0.9 ml min−1

...[Truncated]...

8: Experiment 8
NH4ox/NH4 phosphate=0.21 M/0.42 M
Vol. DMF in mob. phase=280 ml
pH of mobile phase=7.85
Flow=1.1 ml min−1

Response: Rel Retention TC

ResponseExp

1.58901
1.59502

3 1.5210
1.51504
2.00805
1.94806

7 1.8070
1.85208

No check for drift was performed
Effects from measured results

Effect SignificanceFactor

—−0.00375NH4ox/
NH4phosphate

ml DMF in mob *−0.1113
phase

**pH of mobile 0.3488
phase

—0.02925Flow (ml min−1)
AB+CD 0.02325 —
AC+BD −0.00375 —

—−0.03725AD+BC
0.08096Critical value 5%

Critical value 1% 0.1486

In order to compare the t-test based on the
interaction effects with the randomization test, the
computations were redone for the case in which
the minimal design was selected. This gave the
following results:

Effect ProbabilityFactor Significance

−0.00375 0.9714 —NH4ox/
NH4pho
sphate

0.02857 **−0.1113ml DMF
in mob
phase

**0.028570.3488pH of
mobile
phase

0.02925 0.7714 —Flow (ml
min−1)

0.8571 —AB+CD 0.02325
−0.00375 0.9714AC+BD —
−0.03725 0.7143AD+BC —
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With the t-test based on interaction effects, the
effect of factor ‘Volume DMF in mobile phase’
was found to be significant at the 5% significance
level and the effect of factor ‘pH of mobile phase’
at the 1% level. The randomization test indicates
both effects as significant at the 1% level (explana-
tion, see higher). However, the difference between
both results is not large if one considers that in
the first computation the absolute value of the
effect of factor ‘Volume DMF in mobile phase’
(0.1113) was close to the critical effect at the 1%
level (0.1486). It has to be remarked that two
different effects can have the same probability
value, due to the repeated randomization test (see
higher).

5. Conclusion

A MATLAB computer program is developed
for the experimental set-up and interpretation of
ruggedness tests for mainly procedure related
factors.

The program is designed to facilitate the selec-
tion of the designs and the interpretation of the
results and to prevent or detect problems such as
drifting. The graphical interface, on-line help
menus, default values, etc. make RTS very user
friendly, so that only knowledge about the analyt-
ical method is needed to define possibly critical
factors and to decide which measurement re-
sponses need to be studied. Thanks to the decision
support system for the selection of factors and
their levels, it is less likely that the user will forget
some important factors or choose too extreme
values for the extreme levels.

The strategy and program have been success-
fully applied in academical study and industrial
practice.
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